Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 908: 148287, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38360127

RESUMO

Aralia elata (Miq.) Seem, a significant tree species in the Araliaceae family, has medicinal and edible properties. Saponins are the primary active components of A. elata. The 3-hydroxy-3-methylglutaryl- CoA reductase (HMGR) is the initial rate-limiting enzyme of the major metabolic pathway of saponins in A. elata. In this study, the AeHMGR gene was identified through screening of transcriptome data. Through the qRT-PCR analysis, it was determined that the expression level of AeHMGR gene is highest in the somatic embryo and stem of A. elata. Heterologous transformation in tobacco revealed that ectopic expression of the AeHMGR gene leads to a significant reduction in the expression levels of the NtSS, NtFPS, and NtSE genes in transgenic tobacco lines, with a minimum expression level of 0.24 times that of the wild type. In the overexpressed callus lines of A. elata, the expression levels of the AeFPS, AeSE, AeSS, and Aeß-AS genes were also significantly lower compared to the wild type, with a minimum expression level of approximately 0.3 times that of the wild type. Interestingly, the overexpression of the AeHMGR gene in A. elata somatic embryos led to a substantial decrease in the expression levels of AeFPS and AeSS, while the expression levels of AeSE and Aeß-AS increased. Among the transgenic somatic embryo strain lines, line 7 exhibited the highest expression levels of AeSE and Aeß-AS, with fold increases of 11.51 and 9.38, respectively, compared with that of the wild-type. Additionally, a high-performance liquid chromatography method was established to detect five individual saponins in transgenic A. elata. The total saponin content in line 7 somatic embryos was 1.14 times higher than that of wild-type materials, but only 0.30 times that of wild-type cultivated leaves. Moreover, the content of oleanolic acid saponin in line 7 was 1.35 times higher than that of wild-type cultivated leaves. These indicate that HMGR can affect triterpene biosynthesis.


Assuntos
Aralia , Saponinas , Animais , Aralia/genética , Aralia/química , Folhas de Planta/química , Animais Geneticamente Modificados , Saponinas/genética , Cromatografia Líquida de Alta Pressão/métodos
2.
Mol Ecol ; 32(18): 4999-5012, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525516

RESUMO

Genomic structural variations (SVs) are widespread in plant and animal genomes and play important roles in phenotypic novelty and species adaptation. Frequent whole genome duplications followed by (re)diploidizations have resulted in high diversity of genome architecture among extant species. In this study, we identified abundant genomic SVs in the Panax genus that are hypothesized to have occurred through during the repeated polyploidizations/(re)diploidizations. Our genome-wide comparisons demonstrated that although these polyploidization-derived SVs have evolved at distinct evolutionary stages, a large number of SV-intersecting genes showed enrichment in functionally important pathways related to secondary metabolites, photosynthesis and basic cellular activities. In line with these observations, our metabolic analyses of these Panax species revealed high diversity of primary and secondary metabolites both at the tissue and interspecific levels. In particular, genomic SVs identified at ginsenoside biosynthesis genes, including copy number variation and large fragment deletion, appear to have played important roles in the evolution and diversification of ginsenosides. A further herbivore deterrence experiment demonstrated that, as major triterpenoidal saponins found exclusively in Panax, ginsenosides provide protection against insect herbivores. Our study provides new insights on how polyploidization-derived SVs have contributed to phenotypic novelty and plant adaptation.


Assuntos
Ginsenosídeos , Panax , Saponinas , Ginsenosídeos/análise , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Panax/genética , Panax/química , Panax/metabolismo , Variações do Número de Cópias de DNA , Saponinas/química , Saponinas/genética , Saponinas/metabolismo , Adaptação Fisiológica
3.
Science ; 379(6638): 1252-1264, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36952412

RESUMO

The Chilean soapbark tree (Quillaja saponaria) produces soap-like molecules called QS saponins that are important vaccine adjuvants. These highly valuable compounds are sourced by extraction from the bark, and their biosynthetic pathway is unknown. Here, we sequenced the Q. saponaria genome. Through genome mining and combinatorial expression in tobacco, we identified 16 pathway enzymes that together enable the production of advanced QS pathway intermediates that represent a bridgehead for adjuvant bioengineering. We further identified the enzymes needed to make QS-7, a saponin with excellent therapeutic properties and low toxicity that is present in low abundance in Q. saponaria bark extract. Our results enable the production of Q. saponaria vaccine adjuvants in tobacco and open the way for new routes to access and engineer natural and new-to-nature immunostimulants.


Assuntos
Adjuvantes de Vacinas , Vias Biossintéticas , Quillaja , Saponinas , Adjuvantes de Vacinas/biossíntese , Adjuvantes de Vacinas/química , Adjuvantes de Vacinas/genética , Quillaja/enzimologia , Quillaja/genética , Saponinas/biossíntese , Saponinas/química , Saponinas/genética , Análise de Sequência de DNA , Genoma de Planta , Vias Biossintéticas/genética , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Metab Eng ; 76: 232-246, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849090

RESUMO

Cholesterol serves as a key precursor for many high-value chemicals such as plant-derived steroidal saponins and steroidal alkaloids, but a plant chassis for effective biosynthesis of high levels of cholesterol has not been established. Plant chassis have significant advantages over microbial chassis in terms of membrane protein expression, precursor supply, product tolerance, and regionalization synthesis. Here, using Agrobacterium tumefaciens-mediated transient expression technology, Nicotiana benthamiana, and a step-by-step screening approach, we identified nine enzymes (SSR1-3, SMO1-3, CPI-5, CYP51G, SMO2-2, C14-R-2, 8,7SI-4, C5-SD1, and 7-DR1-1) from the medicinal plant Paris polyphylla and established detailed biosynthetic routes from cycloartenol to cholesterol. Specfically, we optimized HMGR, a key gene of the mevalonate pathway, and co-expressed it with the PpOSC1 gene to achieve a high level of cycloartenol (28.79 mg/g dry weight, which is a sufficient amount of precursor for cholesterol biosynthesis) synthesis in the leaves of N. benthamiana. Subsequently, using a one-by-one elimination method we found that six of these enzymes (SSR1-3, SMO1-3, CPI-5, CYP51G, SMO2-2, and C5-SD1) were crucial for cholesterol production in N. benthamiana, and we establihed a high-efficiency cholesterol synthesis system with a yield of 5.63 mg/g dry weight. Using this strategy, we also discovered the biosynthetic metabolic network responsible for the synthesis of a common aglycon of steroidal saponin, diosgenin, using cholesterol as a substrate, obtaining a yield of 2.12 mg/g dry weight in N. benthamiana. Our study provides an effective strategy to characterize the metabolic pathways of medicinal plants that lack a system for in vivo functional verification, and also lays a foundation for the synthesis of active steroid saponins in plant chassis.


Assuntos
Diosgenina , Liliaceae , Saponinas , Diosgenina/metabolismo , Liliaceae/química , Liliaceae/metabolismo , Colesterol/genética , Colesterol/metabolismo , Plantas/metabolismo , Saponinas/genética , Saponinas/química
5.
Physiol Plant ; 174(6): e13810, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36326141

RESUMO

Paris species accumulate a large amount of steroidal saponins, which have numerous pharmacological activities and have become an essential component in many patented drugs. However, only two among all Paris species. Paris are identified as official sources due to high level of bioactive compounds. To clarify the composition of steroidal saponins and the molecular basis behind the differences between species, we investigated transcriptome and metabolic profiles of leaves and rhizomes in Paris polyphylla var. chinensis (PPC), Paris polyphylla var. yunnanensis (PPY), Paris polyphylla var. stenophylla (PPS), Paris fargesii (PF), and Paris mairei (PM). Phytochemical results displayed that the accumulation of steroidal saponins was tissue- and species-specific. PF and PPS contained more steroidal saponins in leaves than rhizomes, while PPY accumulated more steroidal saponins in rhizomes than leaves. PPC and PM contained similar amounts of steroidal saponins in leaves and rhizomes. Transcriptome analysis illustrated that most differentially expressed genes related to the biosynthesis of steroidal saponins were abundantly expressed in rhizomes than leaves. Meanwhile, more biosynthetic genes had significant correlations with steroidal saponins in rhizomes than in leaves. The result of CCA indicated that ACAT, DXS, DWF1, and CYP90 constrained 97.35% of the variance in bioactive compounds in leaves, whereas CYP72, UGT73, ACAT, and GPPS constrained 98.61% of the variance in phytochemicals in rhizomes. This study provided critical information for enhancing the production of steroidal saponins by biotechnological approaches and methodologies.


Assuntos
Liliaceae , Melanthiaceae , Saponinas , Transcriptoma/genética , Perfilação da Expressão Gênica , Liliaceae/genética , Liliaceae/química , Folhas de Planta , Saponinas/genética , Saponinas/análise , Saponinas/química , Melanthiaceae/genética , Melanthiaceae/química
6.
Commun Biol ; 5(1): 50, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027659

RESUMO

The genes in polyphyllins pathway mixed with other steroid biosynthetic genes form an extremely complex biosynthetic network in Paris polyphylla with a giant genome. The lack of genomic data and tissue specificity causes the study of the biosynthetic pathway notably difficult. Here, we report an effective method for the prediction of key genes of polyphyllin biosynthesis. Full-length transcriptome from eight different organs via hybrid sequencing of next generation sequencingand third generation sequencing platforms annotated two 2,3-oxidosqualene cyclases (OSCs), 216 cytochrome P450s (CYPs), and 199 UDP glycosyltransferases (UGTs). Combining metabolic differences, gene-weighted co-expression network analysis, and phylogenetic trees, the candidate ranges of OSC, CYP, and UGT genes were further narrowed down to 2, 15, and 24, respectively. Beside the three previously characterized CYPs, we identified the OSC involved in the synthesis of cycloartenol and the UGT (PpUGT73CR1) at the C-3 position of diosgenin and pennogenin in P. polyphylla. This study provides an idea for the investigation of gene cluster deficiency biosynthesis pathways in medicinal plants.


Assuntos
Vias Biossintéticas/genética , Genes de Plantas/fisiologia , Melanthiaceae/genética , Saponinas/genética
7.
Nat Commun ; 12(1): 2563, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963185

RESUMO

Non-random gene organization in eukaryotes plays a significant role in genome evolution. Here, we investigate the origin of a biosynthetic gene cluster for production of defence compounds in oat-the avenacin cluster. We elucidate the structure and organisation of this 12-gene cluster, characterise the last two missing pathway steps, and reconstitute the entire pathway in tobacco by transient expression. We show that the cluster has formed de novo since the divergence of oats in a subtelomeric region of the genome that lacks homology with other grasses, and that gene order is approximately colinear with the biosynthetic pathway. We speculate that the positioning of the late pathway genes furthest away from the telomere may mitigate against a 'self-poisoning' scenario in which toxic intermediates accumulate as a result of telomeric gene deletions. Our investigations reveal a striking example of adaptive evolution underpinned by remarkable genome plasticity.


Assuntos
Avena/genética , Resistência à Doença/genética , Redes e Vias Metabólicas/genética , Telômero/genética , Avena/metabolismo , Grão Comestível/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Família Multigênica , RNA-Seq , Sequências Repetitivas de Ácido Nucleico , Saponinas/biossíntese , Saponinas/química , Saponinas/genética , Sintenia/genética , Nicotiana/metabolismo , Sequenciamento Completo do Genoma
8.
Int J Biol Sci ; 16(3): 396-407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32015677

RESUMO

As the most frequent cause of cancer-related death worldwide, lung cancer is closely related to inflammation. The interaction between tumor cells and inflammatory cells promotes tumor development and metastasis. During tumor development, vascular endothelial cells form the most important barrier to prevent tumor cell migration to the blood and tissue. Increased vascular permeability provides favorable conditions for the migration of tumor cells, and endothelial tight junctions are an important component of the vascular barrier. Protein kinase C δ is involved in the occurrence of non-small cell lung cancer and regulates vascular permeability and tight junction protein expression. Src kinase was reported to play an important role in TNF-α-induced endothelial inflammation. Ophiopogon Saponin C1 is a new chemical compound isolated from Liriope muscari, but its pharmacological activities have not been fully elucidated. Therefore, we tested the protective effects of C1 on endothelial permeability in a model of TNF-α-induced endothelial inflammation by transendothelial electrical resistance and sodium fluorescein assays and verified these results in a nude mouse model of experimental pulmonary adenocarcinoma metastasis. We further elucidated the mechanism of C1, which was based on the PKCδ and Src proteins, by Western blotting. C1 can inhibit lung cancer in vivo, regulate the level of plasma inflammation in tumor-bearing mice, and protect the pulmonary vascular barrier against injury induced by cancer. It was investigated the expression and distribution of the TJ index protein ZO-1 in mouse vascular endothelium and HUVECs and found that C1 could inhibit the degradation and breakage of the ZO-1 protein. Related signaling experiments confirmed that C1 can inhibit TNF-α and activation of PKCδ and Src kinase. This study laid the foundation for further analysis of new drugs with clear mechanisms and independent intellectual property rights of traditional Chinese medicines.


Assuntos
Neoplasias Pulmonares/metabolismo , Ophiopogon/metabolismo , Saponinas/metabolismo , Saponinas/uso terapêutico , Células A549 , Animais , Western Blotting , Carcinoma Pulmonar de Células não Pequenas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Nus , Ophiopogon/genética , Saponinas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/genética , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína da Zônula de Oclusão-1/metabolismo
9.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146369

RESUMO

Clinopodium chinense (Benth.) O. Kuntze (C. chinense) is an important herb in traditional Chinese medicine. Triterpenoid saponins are a major class of active compounds in C. chinense with broad pharmacological activities and hemostatic, antitumor, and anti-hyperglycemic effects. To identify genes involved in triterpenoid saponin biosynthesis, transcriptomic analyses of leaves, stems, and roots from C. chinense were performed. A total of 135,968 unigenes were obtained by assembling the leaf, stem, and root transcripts, of which 102,154 were annotated in public databases. Differentially expressed genes were determined based on expression profile analysis and analyzed for differential expression of unique genes related to triterpenoid saponin biosynthesis. Multiple unigenes encoding crucial enzymes or transcription factors involved in triterpenoid saponin synthesis were identified and analyzed. The expression levels of unigenes encoding enzymes were experimentally validated using quantitative real-time PCR. This study greatly broadens the public transcriptome database for this species and provides a valuable resource for identifying candidate genes involved in the biosynthesis of triterpenoid saponins and other secondary metabolites.


Assuntos
Genes de Plantas , Lamiales/genética , Saponinas/biossíntese , Transcriptoma , Lamiales/metabolismo , Saponinas/genética
10.
Fitoterapia ; 135: 52-63, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30999023

RESUMO

Steroidal saponins, one of the most diverse groups of plant-derived natural products, elicit biological and pharmacological activities; however, the genes involved in their biosynthesis and the corresponding biosynthetic pathway in monocotyledon plants remain unclear. This study aimed to identify genes involved in the biosynthesis of steroidal saponins by performing a comparative analysis among transcriptomes of Paris polyphylla var. chinensis (PPC), Ypsilandra thibetica (YT), and Polygonatum kingianum (PK). De novo transcriptome assemblies generated 57,537, 140,420, and 151,773 unigenes from PPC, YT, and PK, respectively, of which 56.54, 47.81, and 44.30% were successfully annotated, respectively. Among the transcriptomes for PPC, YT, and PK, we identified 194, 169, and 131; 17, 14, and 26; and, 80, 122, and 113 unigenes corresponding to terpenoid backbone biosynthesis; sesquiterpenoid and triterpenoid biosynthesis; and, steroid biosynthesis pathways, respectively. These genes are putatively involved in the biosynthesis of cholesterol that is the primary precursor of steroidal saponins. Phylogenetic analyses indicated that lanosterol synthase may be exclusive to dicotyledon plant species, and the cytochrome P450 unigenes were closely related to clusters CYP90B1 and CYP734A1, which are UDP-glycosyltransferases unigenes homologous with the UGT73 family. Thus, unigenes of ß-glucosidase may be candidate genes for catalysis of later period modifications of the steroidal saponin skeleton. Our data provide evidence to support the hypothesis that monocotyledons biosynthesize steroidal saponins from cholesterol via the cycloartenol pathway.


Assuntos
Liliaceae/genética , Melanthiaceae/genética , Fitosteróis/biossíntese , Polygonatum/genética , Saponinas/biossíntese , Transcriptoma , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Liliaceae/química , Liliaceae/metabolismo , Melanthiaceae/química , Melanthiaceae/metabolismo , Estrutura Molecular , Filogenia , Fitosteróis/química , Fitosteróis/genética , Polygonatum/química , Polygonatum/metabolismo , Saponinas/química , Saponinas/genética , Triterpenos
11.
J Microbiol ; 56(11): 838-846, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30353470

RESUMO

Acute ischaemic stroke (AIS) seriously affects patient quality of life. We explored the role of the intestinal microbiota on oxidative stress and autophagy in stroke, and Astragaloside IV (AS-IV) reversed the changes induced by intestinal microbiota. We determined the characteristics of the intestinal microbiota of AIS and transient ischaemic attack (TIA) patients by 16S sequencing and found that the structure and diversity of the intestinal microbiota in patients with AIS and TIA were significantly different from those in healthy subjects. Specifically, the abundance of genus Bifidobacterium, Megamonas, Blautia, Holdemanella, and Clostridium, content of homocysteine and triglyceride was increased significantly, thus it may be as a potential mechanism of AIS and TIA. Furthermore, germ-free mice were infused intracolonically with fecal supernatants of TIA and AIS with/without feed AS-IV for 12 weeks, and we found that the feces of AIS up-regulated the autophagy markers Beclin-1, light chain 3 (LC3)-II and autophagy-related gene (Atg)12, and the expression of reactive oxygen species (ROS) and NADPH oxidase 2/4 (NOX2/4), malondialdehyde (MDA), however, the expression of total antioxidant capacity (T-AOC) and activity of superoxide dismutase (SOD) and glutathione (GSH) was down-regulated in brain tissue, the content of homocysteine and free fatty acids (FFA) in serum of the mice. Meanwhile, AS-IV could reverse the above phenomenon, however, it does not affect the motor function of mice. AS-IV reversed these changes and it may be a potential drug for AIS therapeutics.


Assuntos
Autofagia/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Ataque Isquêmico Transitório/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Saponinas/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Triterpenos/farmacologia , Animais , Antioxidantes/metabolismo , Proteína 12 Relacionada à Autofagia/metabolismo , Bactérias/classificação , Bactérias/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Ácidos Graxos/sangue , Fezes/microbiologia , Vetores Genéticos , Glutationa , Homocisteína/sangue , Ataque Isquêmico Transitório/microbiologia , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saponinas/genética , Saponinas/uso terapêutico , Acidente Vascular Cerebral/microbiologia , Superóxido Dismutase/metabolismo , Triterpenos/uso terapêutico
12.
Oncol Rep ; 37(6): 3287-3296, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28440448

RESUMO

Panax ginseng has been used worldwide as a traditional medicine for the treatment of cancer and other diseases. The antiproliferative activity of ginseng has been increased after enzymatic processing of ginseng saponin, which may result in the accumulation of minor saponins, such as Rh2, Rg3, compound K and protopanaxatriol type (PPT) in modified regular ginseng extract (MRGX). In the present study, the anticancer activity and the associated mechanisms of MRGX were investigated using A549 human lung cancer cells. To elucidate the mechanisms underlying the effects of MRGX, we performed a microarray analysis of gene expression in the A549 cells. Molecular mechanisms that were associated with the anticancer activity of MRGX were studied, with a special focus on the autophagy-related multiple signaling pathways in lung cancer cells. Microarray analyses elucidated autophagy-related genes affected by MRGX. Administration of MRGX at 100 µg/ml induced punctate cytoplasmic expression of LC3, Beclin-1 and ATG5 and increased expression of endogenous LC3-II whereas 50 µg/ml did not inhibit the proliferation of A549 cells. Compared to the control cells, in cells treated with MRGX at 100 µg/ml, the level of p-Akt was increased, while that of mTOR-4EBP1 was decreased. Downregulation of mTOR and 4EBP1 in the MRGX-treated cells was found not to be a p-Ulk (S757)-dependent pathway, but a p-Ulk (S317)-dependent autophagic pathway, using AMPK. These data suggest that MRGX regulates AMPK and induces autophagy in lung cancer cells.


Assuntos
Autofagia/genética , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Células A549 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/efeitos dos fármacos , Proteína Beclina-1/genética , Proteínas de Ciclo Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Associadas aos Microtúbulos/genética , Panax/química , Fosfoproteínas/genética , Extratos Vegetais/química , Saponinas/genética , Saponinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
13.
Planta ; 245(6): 1105-1119, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28243734

RESUMO

MAIN CONCLUSION: Production of compound K (a ginsenoside saponin) and its precursors in transgenic tobacco resulted in stunted growth and seed set failure, which may be caused by strong autotoxicity of heterologously produced phytochemicals against the tobacco itself. Panax ginseng roots contain various saponins (ginsenosides), which are major bioactive compounds. A monoglucosylated saponin, compound K (20-O-(ß-D-glucopyranosyl)-20(S)-protopanaxadiol), has high medicinal and cosmetic values but is present in undetectable amounts in naturally grown ginseng roots. The production of compound K (CK) requires complicated deglycosylation of ginsenosides using physicochemical and/or enzymatic degradation. In this work, we report the production of CK in transgenic tobacco by co-overexpressing three genes (PgDDS, CYP716A47 and UGT71A28) isolated from P. ginseng. Introduction and expression of the transgenes in tobacco lines were confirmed by genomic PCR and RT-PCR. All the lines of transgenic tobacco produced CK including its precursors, protopanaxadiol and dammarenediol-II (DD). The concentrations of CK in the leaves ranged from 1.55 to 2.64 µg/g dry weight, depending on the transgenic line. Interestingly, production of CK in tobacco brought stunted plant growth and gave rise to seed set failure. This seed set failure was caused by both long-styled flowers and abnormal pollen development in transgenic tobacco. Both CK and DD treatments highly suppressed in vitro germination and tube growth in wild-type pollens. Based on these results, metabolic engineering for CK production in transgenic tobacco was successfully achieved, but the production of CK and its precursors in tobacco severely affects vegetative and reproductive growth due to the cytotoxicity of phytochemicals that are heterologously produced in transgenic tobacco.


Assuntos
Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Saponinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ginsenosídeos/genética , Ginsenosídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Saponinas/genética , Nicotiana/genética
14.
Plant Physiol ; 170(1): 194-210, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26589673

RESUMO

Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Saponinas/biossíntese , Sítios de Ligação , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/genética , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/metabolismo , Medicago truncatula/genética , Ácido Mevalônico/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Saponinas/genética , Saponinas/metabolismo , Análise de Sequência de RNA , Nicotiana/genética , Triterpenos/metabolismo
15.
Plant J ; 84(3): 478-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26333142

RESUMO

The ability to evolve novel metabolites has been instrumental for the defence of plants against antagonists. A few species in the Barbarea genus are the only crucifers known to produce saponins, some of which make plants resistant to specialist herbivores, like Plutella xylostella, the diamondback moth. Genetic mapping in Barbarea vulgaris revealed that genes for saponin biosynthesis are not clustered but are located in different linkage groups. Using co-location with quantitative trait loci (QTLs) for resistance, transcriptome and genome sequences, we identified two 2,3-oxidosqualene cyclases that form the major triterpenoid backbones. LUP2 mainly produces lupeol, and is preferentially expressed in insect-susceptible B. vulgaris plants, whereas LUP5 produces ß-amyrin and α-amyrin, and is preferentially expressed in resistant plants; ß-amyrin is the backbone for the resistance-conferring saponins in Barbarea. Two loci for cytochromes P450, predicted to add functional groups to the saponin backbone, were identified: CYP72As co-localized with insect resistance, whereas CYP716As did not. When B. vulgaris sapogenin biosynthesis genes were transiently expressed by CPMV-HT technology in Nicotiana benthamiana, high levels of hydroxylated and carboxylated triterpenoid structures accumulated, including oleanolic acid, which is a precursor of the major resistance-conferring saponins. When the B. vulgaris gene for sapogenin 3-O-glucosylation was co-expressed, the insect deterrent 3-O-oleanolic acid monoglucoside accumulated, as well as triterpene structures with up to six hexoses, demonstrating that N. benthamiana further decorates the monoglucosides. We argue that saponin biosynthesis in the Barbarea genus evolved by a neofunctionalized glucosyl transferase, whereas the difference between resistant and susceptible B. vulgaris chemotypes evolved by different expression of oxidosqualene cyclases (OSCs).


Assuntos
Barbarea/genética , Barbarea/metabolismo , Saponinas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Herbivoria , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Triterpenos Pentacíclicos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Sapogeninas/metabolismo , Saponinas/genética , Nicotiana/genética , Triterpenos/metabolismo
16.
Genomics ; 104(3): 186-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25128726

RESUMO

Marsdenia tenacissima is a well-known anti-cancer medicinal plant used in traditional Chinese medicine due to bioactive constituents of polyoxypregnane glycosides, such as tenacissosides, marsdenosides and tenacigenosides. Genomic information regarding this plant is very limited, and rare information is available about the biosynthesis of polyoxypregnane glycosides. To facilitate the basic understanding about the polyoxypregnane glycoside biosynthetic pathways, de novo assembling was performed to generate a total of 73,336 contigs and 65,796 unigenes, which represent the first transcriptome of this species. These included 27 unigenes that were involved in steroid biosynthesis and could be related to pregnane backbone biosynthesis. The expression patterns of six unigenes involved in polyoxypregnane biosynthesis were analyzed in leaf and stem tissues by quantitative real time PCR (qRT-PCR) to explore their putative function. Furthermore, a total of 15,295 simple sequence repeats (SSRs) were identified from 11,911 unigenes, of which di-nucleotide motifs were the most abundant.


Assuntos
Genes de Plantas , Marsdenia/genética , Saponinas/biossíntese , Transcriptoma , Marcadores Genéticos , Filogenia , Saponinas/genética
17.
Plant Cell ; 25(3): 1078-92, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23532069

RESUMO

Operon-like gene clusters are an emerging phenomenon in the field of plant natural products. The genes encoding some of the best-characterized plant secondary metabolite biosynthetic pathways are scattered across plant genomes. However, an increasing number of gene clusters encoding the synthesis of diverse natural products have recently been reported in plant genomes. These clusters have arisen through the neo-functionalization and relocation of existing genes within the genome, and not by horizontal gene transfer from microbes. The reasons for clustering are not yet clear, although this form of gene organization is likely to facilitate co-inheritance and co-regulation. Oats (Avena spp) synthesize antimicrobial triterpenoids (avenacins) that provide protection against disease. The synthesis of these compounds is encoded by a gene cluster. Here we show that a module of three adjacent genes within the wider biosynthetic gene cluster is required for avenacin acylation. Through the characterization of these genes and their encoded proteins we present a model of the subcellular organization of triterpenoid biosynthesis.


Assuntos
Avena/genética , Genes de Plantas , Família Multigênica , Saponinas/metabolismo , Triterpenos/metabolismo , Acilação , Aciltransferases/classificação , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ascomicetos/patogenicidade , Avena/enzimologia , Avena/metabolismo , Regulação da Expressão Gênica de Plantas , Metilação , Metiltransferases/classificação , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Mutação , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Saponinas/genética , Relação Estrutura-Atividade , Nicotiana/genética , Nicotiana/metabolismo
18.
J Immunotoxicol ; 9(4): 368-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22506556

RESUMO

It has been shown that naturally occurring regulatory T-cells (CD4(+)CD25(+) Foxp3(+) T-cells) have critical roles in tumor invasion and down-regulation of immune response against established tumors. High expression of CD25 (IL-2Rα) by regulatory T (T(reg)) cells may cause an inefficient response when using IL-2-based cancer vaccines. It seems that selective elimination of T(reg) cells before treatment of tumor-bearing T-cells can strongly increase the efficacy of a vaccine. The aim of this study was to set up an efficient cost-effective protocol to eliminate CD4(+)CD25(+) T-cells-using the immunotoxin anti-tac-SAP. Peripheral blood mononuclear cells (PBMC) taken from colon cancer patients were treated with different concentrations (i.e., 0-100 µg/dl) of the immunotoxin. Flow cytometric analyses were then preformed to analyze expression of CD4, CD25, CD3, CD8, and CD45 surface markers; semi-quantitative fluorescent-PCR was used for the detection of Foxp3 expression before and after anti-tac-SAP treatment. The results indicated that anti-tac-SAP effectively eliminated CD4(+)CD25(+) T(reg) cells and that 25 µg/dl was the optimal concentration of anti-tac-SAP for selective depletion of these cells. These outcomes were verified by analyses of Foxp3 expression. The results also indicated that this immunotoxin had no non-specific effects on other T-cells, including CD4(+)CD25(-) and CD8(+)CD45(+) T-cells. Building on the work here, ongoing/future studies with the anti-tac-SAP will focus on functional assessments of the remaining (i.e., non-eliminated) T-cells (i.e., CD8, CD4; using proliferation and peptide sensitization assays) to ascertain if the immunotoxin inadvertently alters the functions of these cells-an untoward outcome.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias do Colo/terapia , Imunotoxinas/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2/imunologia , Depleção Linfocítica/métodos , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Inativadoras de Ribossomos Tipo 1/uso terapêutico , Saponinas/uso terapêutico , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , ADP Ribose Transferases/genética , Anticorpos Monoclonais/genética , Toxinas Bacterianas/genética , Antígenos CD4/imunologia , Células Cultivadas , Exotoxinas/genética , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Humanos , Imunotoxinas/genética , Proteínas Recombinantes de Fusão/genética , Saponinas/genética , Subpopulações de Linfócitos T/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Fatores de Virulência/genética , Exotoxina A de Pseudomonas aeruginosa
19.
Br J Pharmacol ; 159(2): 345-52, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20015087

RESUMO

BACKGROUND AND PURPOSE: Certain saponins synergize with antitumour drugs to enhance their efficacy, but the mechanisms underlying this synergy in vivo are not well studied. Here, we describe the distribution of Saponinum album (Spn) from Gypsophila paniculata L. in mice after subcutaneous injection. EXPERIMENTAL APPROACH: The [(3)H]-labelled Spn used for in vivo experiments was biologically active, as it still increased the cytotoxicity of a chimeric toxin in vitro. Distribution of [(3)H]-Spn was measured in BALB/c mice, with or without subcutaneous tumours in the flank. Labelled Spn was subcutaneously injected in the neck, and samples of organs, blood, urine and tumour tissue were analysed for radioactivity, 5-240 min after the injection. KEY RESULTS: The majority of [(3)H]-Spn distributed within 10 min throughout the entire animal, with high levels of radioactivity in the urine by 30 min. No preferential accumulation in tumour tissue or other organs was observed. In tumour-bearing mice, using a sequential combination of Spn (given first) and a chimeric toxin against the epidermal growth factor receptor, ErbB1, we tested two different pretreatment times for Spn. There was high antitumour efficacy (66% inhibition of tumour growth) after 60 min pre treatment with Spn, but no significant inhibition after 10 min pre treatment with Spn. CONCLUSIONS AND IMPLICATIONS: [(3)H]-Spn was rapidly cleared from the mice after s.c. injection, and antitumour synergy with chimeric toxins was correlated with the removal of excess Spn from tissues. Disposition of Spn in vivo may critically determine antitumour synergy with chimeric toxins.


Assuntos
Antineoplásicos/farmacocinética , Receptores ErbB/biossíntese , Imunotoxinas/farmacocinética , Saponinas/farmacocinética , Animais , Antineoplásicos/farmacologia , Caryophyllaceae , Linhagem Celular , Linhagem Celular Tumoral , Sinergismo Farmacológico , Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Feminino , Humanos , Imunotoxinas/genética , Imunotoxinas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Proteínas Inativadoras de Ribossomos Tipo 1/genética , Saponinas/genética , Saponinas/farmacologia , Saporinas , Distribuição Tecidual , Trítio
20.
FEBS J ; 272(19): 4983-95, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16176271

RESUMO

Several protein toxins, such as the potent plant toxin ricin, enter mammalian cells by endocytosis and undergo retrograde transport via the Golgi complex to reach the endoplasmic reticulum (ER). In this compartment the catalytic moieties exploit the ER-associated degradation (ERAD) pathway to reach their cytosolic targets. Bacterial toxins such as cholera toxin or Pseudomonas exotoxin A carry KDEL or KDEL-like C-terminal tetrapeptides for efficient delivery to the ER. Chimeric toxins containing monomeric plant ribosome-inactivating proteins linked to various targeting moieties are highly cytotoxic, but it remains unclear how these molecules travel within the target cell to reach cytosolic ribosomes. We investigated the intracellular pathways of saporin, a monomeric plant ribosome-inactivating protein that can enter cells by receptor-mediated endocytosis. Saporin toxicity was not affected by treatment with Brefeldin A or chloroquine, indicating that this toxin follows a Golgi-independent pathway to the cytosol and does not require a low pH for membrane translocation. In intoxicated Vero or HeLa cells, ricin but not saporin could be clearly visualized in the Golgi complex using immunofluorescence. The saporin signal was not evident in the Golgi, but was found to partially overlap with that of a late endosome/lysosome marker. Consistently, the toxicities of saporin or saporin-based targeted chimeric polypeptides were not enhanced by the addition of ER retrieval sequences. Thus, the intracellular movement of saporin differs from that followed by ricin and other protein toxins that rely on Golgi-mediated retrograde transport to reach their retrotranslocation site.


Assuntos
Citosol/metabolismo , Espaço Intracelular/metabolismo , Ricina/metabolismo , Saponinas/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Mutação/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Ricina/genética , Ricina/toxicidade , Saponinas/genética , Saponinas/toxicidade , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA